

Docker Interface

Docker Interface (DI) is a declarative interface for building images and running commands in containers using Docker.

Contents:

	Introduction
	Installing Docker interface

	Using Docker Interface

	Plugins
	How plugins work

	Enable and disabling plugins

	Schema validation

	Plugin reference
	BasePlugin

	GoogleContainerRegistryPlugin

	WorkspaceMountPlugin

	UserPlugin

	HomeDirPlugin

	GoogleCloudCredentialsPlugin

	BuildConfigurationPlugin

	RunConfigurationPlugin

	JupyterPlugin

	SubstitutionPlugin

	ValidationPlugin

	BuildPlugin

	RunPlugin

	Examples
	cython

	notebook

	ports

	env

	Schema

Indices and tables

	Index

	Module Index

	Search Page

Introduction

Docker provides a containerised runtime that enables easy and reproducible deployment of applications to production. Unfortunately, these applications are often developed using the local environment of the developer such that it can be difficult to reproduce the results on another machine. Using Docker as a development environment is possible in principle but plagued by problems in practice. For example,

	mounting a folder from the host in the container can cause permission problems [https://stackoverflow.com/questions/23544282/what-is-the-best-way-to-manage-permissions-for-docker-shared-volumes],

	ports need to be manually forwarded to run Jupyter notebook servers [https://hub.docker.com/r/jupyter/base-notebook/],

	or credentials are not available inside the container [https://stackoverflow.com/questions/42307210/user-google-cloud-credentials-inside-ephemeral-container].

These issues can be addressed directly by modifying the arguments passed to the Docker command line interface [https://docs.docker.com/engine/reference/commandline/cli/] (CLI), but the resulting commands can be formidable. Docker Interface allows users to define a Docker command declaratively in a configuration file rather than having to remember to type out all required arguments on the command line. In short, Docker Interface is a translator from a command declaration to a Docker command.

Installing Docker interface

You can install Docker Interface using the following pip command (you need a python3 interpreter).

pip install docker-interface

To check that Docker Interface was installed successfully, run

di --help

Using Docker Interface

Docker Interface will attempt to locate a configuration file di.yml in the current working directory. A basic configuration (as a YAML or JSON file) might look like so.

docker: docker # The docker command to use, e.g. nvidia-docker
workspace: . # The workspace path (relative to the directory containing the configuration)

All paths in the configuration are relative to the workspace. The values shown above are default values and you can omit them unless you want to change them.

Docker Interface supports two commands:

	build [https://docs.docker.com/engine/reference/commandline/build/] to build a Docker image,

	and run [https://docs.docker.com/engine/reference/commandline/run/] to execute a command inside a Docker container.

Information that is relevant to a particular command is stored in a corresponding section of the configuration file. For example, you can run the bash shell in the latest ubuntu like so: First, create the following configuration file.

run:
 image: ubuntu

Second, run di run bash from the command line. In contrast to docker run ubuntu bash, the di command will open an interactive shell because it starts the container interactively if it detects that Docker Interface was launched interactively. By default, it will also create an ephemeral container which is deleted as soon as you log out of the shell.

Before delving into the plugin architecture that powers Docker Interface, let us consider a simple example for building your own Docker image. Create a Dockerfile with the following content

FROM python
RUN pip install ipython

and modify your di.yml configuration to read:

build:
 tag: my-ipython

Running di build from the command line will build your image, and di run ipython will run the ipython command inside the container. Unless otherwise specified, Docker Interface uses the image built in the build step to start a new container when you use the run command. Note: the run command also sets the environment variable DOCKER_INTERFACE=true which allows you to dynamically detect when running under the control of di.

A comprehensive list of variables that can be set in the di.yml configuration can be found in the Plugin reference.

Plugins

Docker Interface is a simple framework leveraging a suite of plugins to do most of its work. Each plugin is a python class that defines at least two static attributes:

	COMANDS is a sequence of commands such as run or build and defines for which command the plugin should be active. Setting COMMANDS to all will enable the plugin for all commands.

	ORDER is an integer that determines the order of execution with lower numbers being executed earlier.

Furthermore, each plugin can additionally define:

	ENABLED (defaults to True) which indicates whether the plugin is enabled. Set ENABLED to False if you want a plugin to be disabled by default.

	SCHEMA (defaults to {}) is a JSON schema definition that is specific to the plugin. The Docker Interface configuration is validated against the union of schemas defined by all enabled plugins.

How plugins work

Each plugin has two methods used by Docker Interface:

	add_arguments(parser) is called for each enabled plugin before Docker Interface attempts to parse the command line arguments. Each plugin may add arbitrary arguments to the parser of the command line interface as long as they do not interfere with one another.

	apply(configuration, schema, args) is called for each plugin after args have been parsed. The schema passed to the plugins is the union of all plugins’ schemas. Finally, configuration is the configuration returned by the apply method of a plugin with lower ORDER. The plugin may modify the configuration (as UserPlugin does), execute a Docker command (as BuildExecutePlugin does), or run any other python code.

Enable and disabling plugins

Unless otherwise specified, a plugin is enabled if and only if its class-level attribute ENABLED is TRUE. But you can specify which plugins to enable or disable in the configuration like so.

plugins:
 - user
 - homedir

The above configuration will enable only the user and the homedir plugins. Alternatively, you can specify which plugins to enable or disable explicitly.

plugins:
 enable:
 - user
 disable:
 - homedir

Which will enable the user plugin, disable the homedir plugin, and leave all other plugins unchanged.

Schema validation

Docker Interface validates the configuration against the union of schemas defined by all enabled plugins. Different plugins may define the same schema as long as the definitions are consistent with one another. Schema definitions are also the preferred way to provide default values for the configuration. For example, the schema for the BasePlugin responsible for loading the configuration, handling the workspace, and other global variables looks like so.

{
 "properties": {
 "workspace": {
 "type": "string",
 "description": "Path defining the DI workspace (absolute or relative to the URI of the configuration document). All subsequent path definitions must be absolute or relative to the `workspace`."
 },
 "docker": {
 "type": "string",
 "description": "Name of the docker CLI.",
 "default": "docker"
 }
 },
 "required": [
 "docker",
 "workspace"
]
}

The configuration can define the parameters docker and workspace, and we provide a default value for docker. We have omitted some properties for easier readability. If your plugin adds new configuration values, it should define a SCHEMA.

Plugin reference

This document lists all plugins in order of execution.

BasePlugin

Load or create a default configuration and set up logging.

Properties

	workspace (string): Path defining the DI workspace (absolute or relative to the URI of this document). All subsequent path definitions must be absolute or relative to the workspace.

	docker (string): Name of the docker CLI (default: docker).

	log-level (string): (default: info).

	dry-run (boolean): Whether to just construct the docker command.

	status-code (integer): status code returned by docker.

	plugins: .

GoogleContainerRegistryPlugin

Configure docker authorization for Google services such as Google Container Registry.

WorkspaceMountPlugin

Mount the workspace inside the container.

Properties

	
	run: .
	
	workspace-dir (string): Path at which to mount the workspace in the container (default: /workspace).

	workdir (string): (default: #{workspace-dir}).

UserPlugin

Share the host user id and group id with the container.

The plugin provides the following additional variables for substitution:

	user/name: Name of the user on the host.

	user/uid: User id of the user on the host.

	group/name: Name of the user group on the host.

	group/gid: Group id of the user group on the host.

Properties

	
	run: .
	
	user (string): Username or UID (format: <name|uid>[:<group|gid>]).

HomeDirPlugin

Mount a home directory placed in the current directory.

GoogleCloudCredentialsPlugin

Mount Google Cloud credentials in the Docker container.

BuildConfigurationPlugin

Configure how to build a docker image.

Properties

	
	build: .
	
	path (string): Path of the build context (default: #{/workspace}).

	tag (string): Name and optionally a tag in the ‘name:tag’ format (default: docker-interface-image).

	file (string): Name of the Dockerfile (default: #{path}/Dockerfile).

	build-arg (object): Set build-time variables.

	no-cache (boolean): Do not use cache when building the image.

	quiet (boolean): Suppress the build output and print image ID on success.

	cpu-shares (integer): CPU shares (relative weight).

	memory (string): Memory limit.

RunConfigurationPlugin

Configure how to run a command inside a docker container.

Properties

	
	run: .
	
	image (string): Image to derive the container from (default: #{/build/tag}).

	env (object): Set environment variables (use null to forward environment variables).

	env-file (array): Read in a file of environment variables.

	mount (array): Attach a filesystem mount to the container.

	publish (array): Publish a container’s port(s), or range(s) of ports, to the host.

	runtime (string): Runtime to use for this container.

	tmpfs (array): Mount a tmpfs directory.

	cmd (array): Command to execute inside the container.

	tty (boolean): Allocate a pseudo-TTY.

	cpu-shares (integer): CPU shares (relative weight).

	name (string): Assign a name to the container.

	network (string): Connect a container to a network (default “default”).

	label (array): Set meta data on a container.

	rm (boolean): Automatically remove the container when it exits (default: True).

	privileged (boolean): Give extended privileges to this container.

	memory (string): Memory limit.

	interactive (boolean): Keep STDIN open even if not attached.

	entrypoint (string): Overwrite the default ENTRYPOINT of the image.

	workdir (string): Working directory inside the container.

	user (string): Username or UID (format: <name|uid>[:<group|gid>]).

	group-add (array): Additional groups to run as.

	gpus (string): GPU devices to add to the container (‘all’ to pass all GPUs).

JupyterPlugin

Forward the port required by Jupyter Notebook to the host machine and print a URL for easily
accessing the notebook server.

SubstitutionPlugin

Substitute variables in strings.

String values in the configuration document may

	reference other parts of the configuration document using #{path}, where path
may be an absolute or relative path in the document.

	reference a variable using ${path}, where path is assumed to be an absolute
path in the VARIABLES class attribute of the plugin.

By default, the plugin provides environment variables using the env prefix. For example,
a value could reference the user name on the host using ${env/USER}. Other plugins can
provide variables for substitution by extending the VARIABLES class attribute and should
do so using a unique prefix.

ValidationPlugin

Validate the configuration document.

BuildPlugin

Build a docker image.

RunPlugin

Run a command inside a docker container.

Examples

This document lists example use cases for Docker Interface that are available on GitHub [https://github.com/spotify/docker_interface/tree/master/examples]. Additional, comprehensive examples can be found in the tests [https://github.com/spotify/docker_interface/tree/master/tests/configurations].

cython [https://github.com/spotify/docker_interface/tree/master/examples/cython]

This simple example addresses some of the difficulties associated with using cython and di together: the cython code is compiled when the Docker image is built. But when the workspace is mounted in the container, the binaries are hidden and the code can no longer be executed. We thus use pyximport [http://cython.readthedocs.io/en/latest/src/reference/compilation.html#compiling-with-pyximport] to compile the cython code on the fly. See cython_example/__init__.py for details.

notebook [https://github.com/spotify/docker_interface/tree/master/examples/notebook]

This example demonstrates automatic port forwarding for the Jupyter notebook using di. Port forwarding is implemented using the JupyterPlugin in docker_interface/plugins/python.py.

ports [https://github.com/spotify/docker_interface/tree/master/examples/ports]

This example demonstrates how to forward ports using di’s declarative syntax.

env [https://github.com/spotify/docker_interface/tree/master/examples/env]

This example demonstrates that a default environment variable is set whe using di run.

Schema

The document below provides a comprehensive schema definition for Docker Interface.

{
 "additionalProperties": false,
 "properties": {
 "workspace": {
 "type": "string",
 "description": "Path defining the DI workspace (absolute or relative to the URI of this document). All subsequent path definitions must be absolute or relative to the `workspace`."
 },
 "docker": {
 "type": "string",
 "description": "Name of the docker CLI.",
 "default": "docker"
 },
 "log-level": {
 "type": "string",
 "enum": [
 "debug",
 "info",
 "warning",
 "error",
 "critical",
 "fatal"
],
 "default": "info"
 },
 "dry-run": {
 "type": "boolean",
 "description": "Whether to just construct the docker command.",
 "default": false
 },
 "status-code": {
 "type": "integer",
 "description": "status code returned by docker"
 },
 "plugins": {
 "oneOf": [
 {
 "type": "array",
 "description": "Enable the listed plugins and disable all plugins not listed.",
 "items": {
 "type": "string"
 }
 },
 {
 "type": "object",
 "properties": {
 "enable": {
 "type": "array",
 "description": "Enable the listed plugins.",
 "items": {
 "type": "string"
 }
 },
 "disable": {
 "type": "array",
 "description": "Disable the listed plugins.",
 "items": {
 "type": "string"
 }
 }
 },
 "additionalProperties": false
 }
]
 },
 "run": {
 "properties": {
 "workspace-dir": {
 "type": "string",
 "description": "Path at which to mount the workspace in the container.",
 "default": "/workspace"
 },
 "workdir": {
 "type": "string",
 "default": "#{workspace-dir}",
 "description": "Working directory inside the container"
 },
 "user": {
 "type": "string",
 "description": "Username or UID (format: <name|uid>[:<group|gid>])"
 },
 "rm": {
 "type": "boolean",
 "description": "Automatically remove the container when it exits",
 "default": true
 },
 "runtime": {
 "type": "string",
 "description": "Runtime to use for this container."
 },
 "cpu-shares": {
 "type": "integer",
 "description": "CPU shares (relative weight)",
 "minimum": 0,
 "maximum": 1024
 },
 "gpus": {
 "type": "string",
 "description": "GPU devices to add to the container (\u2018all\u2019 to pass all GPUs)"
 },
 "publish": {
 "type": "array",
 "description": "Publish a container's port(s), or range(s) of ports, to the host.",
 "items": {
 "type": "object",
 "properties": {
 "ip": {
 "type": "string",
 "description": ""
 },
 "host": {
 "anyOf": [
 {
 "type": "number"
 },
 {
 "type": "string",
 "pattern": "\\d+-\\d+"
 }
],
 "description": "Port (e.g. `8000`) or range of ports (e.g. `8000-8100`) on the host."
 },
 "container": {
 "anyOf": [
 {
 "type": "number"
 },
 {
 "type": "string",
 "pattern": "\\d+-\\d+"
 }
],
 "description": "Port (e.g. `8000`) or range of ports (e.g. `8000-8100`) on the container."
 }
 },
 "required": [
 "container"
],
 "additionalProperties": false
 }
 },
 "interactive": {
 "type": "boolean",
 "description": "Keep STDIN open even if not attached"
 },
 "image": {
 "type": "string",
 "description": "Image to derive the container from.",
 "default": "#{/build/tag}"
 },
 "tmpfs": {
 "type": "array",
 "description": "Mount a tmpfs directory",
 "items": {
 "type": "object",
 "properties": {
 "destination": {
 "type": "string",
 "description": "Absolute mount path in the container."
 },
 "options": {
 "type": "array",
 "description": "Mount options for the temporary file system.",
 "items": {
 "type": "string"
 }
 },
 "size": {
 "type": "integer",
 "description": "Size of the tmpfs mount in bytes."
 },
 "mode": {
 "type": "integer",
 "description": "File mode of the tmpfs in octal."
 }
 },
 "required": [
 "destination"
],
 "additionalProperties": false
 }
 },
 "tty": {
 "type": "boolean",
 "description": "Allocate a pseudo-TTY"
 },
 "label": {
 "type": "array",
 "description": "Set meta data on a container"
 },
 "privileged": {
 "type": "boolean",
 "description": "Give extended privileges to this container",
 "default": false
 },
 "name": {
 "type": "string",
 "description": "Assign a name to the container"
 },
 "group-add": {
 "type": "array",
 "description": "Additional groups to run as.",
 "items": {
 "type": "string"
 }
 },
 "entrypoint": {
 "type": "string",
 "description": "Overwrite the default ENTRYPOINT of the image"
 },
 "mount": {
 "type": "array",
 "description": "Attach a filesystem mount to the container.",
 "items": {
 "type": "object",
 "properties": {
 "type": {
 "type": "string",
 "enum": [
 "bind",
 "tmpfs",
 "volume"
]
 },
 "source": {
 "type": "string",
 "description": "Volume name or path on the host."
 },
 "destination": {
 "type": "string",
 "description": "Absolute mount path in the container."
 },
 "readonly": {
 "type": "boolean",
 "description": "Whether to mount the volume read-only."
 }
 },
 "required": [
 "type",
 "destination"
],
 "additionalProperties": false
 }
 },
 "env-file": {
 "type": "array",
 "description": "Read in a file of environment variables.",
 "items": {
 "type": "string"
 }
 },
 "network": {
 "type": "string",
 "description": "Connect a container to a network (default \"default\")"
 },
 "memory": {
 "type": "string",
 "description": "Memory limit"
 },
 "cmd": {
 "type": "array",
 "description": "Command to execute inside the container.",
 "items": {
 "type": "string"
 }
 },
 "env": {
 "type": "object",
 "description": "Set environment variables (use `null` to forward environment variables).",
 "additionalProperties": {
 "type": [
 "string",
 "null"
]
 }
 }
 },
 "additionalProperties": false
 },
 "build": {
 "properties": {
 "path": {
 "type": "string",
 "description": "Path of the build context.",
 "default": "#{/workspace}"
 },
 "tag": {
 "type": "string",
 "description": "Name and optionally a tag in the 'name:tag' format.",
 "default": "docker-interface-image"
 },
 "file": {
 "type": "string",
 "description": "Name of the Dockerfile.",
 "default": "#{path}/Dockerfile"
 },
 "build-arg": {
 "type": "object",
 "description": "Set build-time variables.",
 "additionalProperties": {
 "type": "string"
 }
 },
 "no-cache": {
 "type": "boolean",
 "description": "Do not use cache when building the image"
 },
 "quiet": {
 "type": "boolean",
 "description": "Suppress the build output and print image ID on success"
 },
 "cpu-shares": {
 "type": "integer",
 "description": "CPU shares (relative weight)",
 "minimum": 0,
 "maximum": 1024
 },
 "memory": {
 "type": "string",
 "description": "Memory limit"
 }
 },
 "required": [
 "tag",
 "path",
 "file"
],
 "additionalProperties": false
 }
 },
 "required": [
 "workspace",
 "docker"
],
 "title": "Declarative Docker Interface (DI) definition.",
 "$schema": "http://json-schema.org/draft-04/schema"
}

Index

 nav.xhtml

 Table of Contents

 		
 Docker Interface

 		
 Introduction

 		
 Installing Docker interface

 		
 Using Docker Interface

 		
 Plugins

 		
 How plugins work

 		
 Enable and disabling plugins

 		
 Schema validation

 		
 Plugin reference

 		
 BasePlugin

 		
 Properties

 		
 GoogleContainerRegistryPlugin

 		
 WorkspaceMountPlugin

 		
 Properties

 		
 UserPlugin

 		
 Properties

 		
 HomeDirPlugin

 		
 GoogleCloudCredentialsPlugin

 		
 BuildConfigurationPlugin

 		
 Properties

 		
 RunConfigurationPlugin

 		
 Properties

 		
 JupyterPlugin

 		
 SubstitutionPlugin

 		
 ValidationPlugin

 		
 BuildPlugin

 		
 RunPlugin

 		
 Examples

 		
 cython

 		
 notebook

 		
 ports

 		
 env

 		
 Schema

_static/minus.png

_static/plus.png

_static/file.png

